DEVELOPING A PARTICIPATORY MODELING PROCESS:

A Rough Guide for Using Collaborative Modeling in Environmental Problem Solving

THE PARTICIPATORY MODELING PROCESS (based on van den Belt, 2004):

Step 1: Preparation

Select & invite relevant stakeholders

Gather baseline information about the group & their perspectives of the issue

Step 2: Workshops

Workshop 1: Introduction

Introductions

Ground Rules

- Participants' Rights & Responsibilities
- · Behavioral Guidelines
- Strategies to Deal with Conflict
- · Modeling Guidelines

Introduce System Dynamics Thinking

- Emphasis is on the relationships within a system or between different subsystems
- · Feedback loops and time lags are critical in understanding behavioral patterns
- Understanding patterns rather than creating accurate predictions is often the primary objective

Introduce the Modeling Software (STELLA, Powersim or Vensim)

- Question 1: What is the central component of the story? (this should be a NOUN = STOCK)
- Question 2: What specific actions influence the central component? (These should be VERBS = FLOWS)
- Question 3: What other issues drive or inhibit the action? (These should be ADJECTIVES & ADVERBS = CONVERTERS)

Workshop 2: Defining the Problem

Reference Mode of Behavior

- What is the history of system?
- What specific trends or behaviors have we seen in the past?
- What will be our baseline understanding or description of the system?

Envisioning / Backcasting

- How does the world look when it is perfect?
- Share what your agency or organization might see as their "Perfect Future"...

Ecological Risk Assessment

Scale Issues

	Time	Space	Complexity	Social
	Time Horizon	Global,	Diverse issues are	Horizontal & vertical
	e.g., 1970 –	Regional,	included	integration
Extent	2020	Local	e.g., ecology, hydrology,	e.g., interagency &
		e.g., a	biology, economy,	inter-institutional
		watershed	sociology & culture	emphasis
	The Time Step	The level of	Number of model icons	Number of people
	e.g., 1 year, 1	spatial	e.g., 10 state variables,	involved, institutional
Resolution	decade, etc.	explicitness,	25 auxiliary variables, 52	networks
		numbers of	parameters	e.g., 23 people from 8
		pixels		institutions

1

Workshop 3: Building the Qualitative Model

Sector Definition

- Define a few areas that encompass the major aspects of the problem
- Broad categories that guide thinking without going on a tangent or digging into details
- For example, if your group is interested in examining "linkages between ecology & economics" you may create a "natural capital" or "ecosystem services" sector

Stocks & Flows – In small groups the participants determine and draw what stocks and flows should be included in each sector.

Feedback Loops & Lag Time – Participants also discuss the various feeback loops and draw arrows to represent such interrelationships

Workshop 4: Building the Quantitative Model

Quantification & Data Gathering

- Develop a list of time-series data requirements
- Experts are invited to contribute and assist in the model building

Calibration – "tuning" the model by manipulating independent variables and parameters to obtain a reasonable match between observed and simulated values

Workshop 5: Testing, Scenarios & Conclusions

Validity & Usefulness of the Model
Building Confidence in the Model
Learning from Scenarios
Sensitivity Analysis
Consensus-based Conclusions & Recommendations

Step 3: Follow-up & Tutorial

Follow-up interviews
Written Report & Final Model
Tutorial – Exploring the model with the participants
Participants practice communicating their results to a wider audience